O.P.Code: 20ME0305

R20

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech II Year I Semester Regular & Supplementary Examinations December-2023 THERMAL ENGINEERING

(Mechanical Engineering)

	(Mechanical Engineering)				
Tin	ne: 3 Hours	Max.	Mar	ks: 60	
	(Answer all Five Units $5 \times 12 = 60$ Marks)				
	UNIT-I				
1	a What are the various classifications of air compressors?	CO ₁	L2	6M	
	b Explain the working of any two Rotary compressors with neat sketch.	CO1	L2	6M	
	OR	001		OIVI	
2	A single –stage double –acting air compressor is required to deliver 14 m ³	CO1	L4	12M	
	of air per Minute measured at 1.013 bar and 1500C. The delivery pressure	COI	LIT	12111	
	is 7 bar and the speed 300 r.p.m. Take the clearance volume as 5% of the				
	swept volume with the compression and expansion index of 1.3 Calculate:				
	(i) Swept volume of the cylinder; The delivery temperature; (iii). Indicated				
	power.				
_	UNIT-II				
3	Explain the working of Open Cycle Brayton cycle with neat sketch.	CO ₂	L2	12M	
	OR				
4	Air enters the compressor of a gas turbine plant operating on Brayton cycle	CO ₂	L4	12M	
	at 1 bar, 27°C. The pressure ratio in the cycle is 6. Calculate the maximum				
	temperature in the cycle and the cycle efficiency. Assume the turbine work				
	as 2.5 times the compressor work. Take $\gamma = 1.4$				
	UNIT-III				
5	a Define Steam nozzle and also explain about expansion of steam in	CO ₃	L2	6M	
	nozzle with neat sketch.				
	b Explain various types of nozzles with neat sketches.	CO ₃	L2	6M	
	OR				
6	Determine the throat area, exit area and exit velocity for a steam nozzle to	CO ₃	L3	12M	
	pass 0.2kg/s when the inlet conditions are 12 bar and 2500C and final				
	pressure is 2bar. Assume that the expansion is isentropic and inlet velocity				
	is negligible. Take n=1.3 for superheated steam				
	UNIT-IV				
7	Draw the combined velocity triangle of Impulse turbine and explain the	CO4	L1	12M	
·	salient features.	00.		12111	
	OR				
8	Distinguish between impulse and reaction turbines.	CO ₄	L4	12M	
	UNIT-V				
9	The following readings were taken during the test of a single cylinder four	COS	T.3	12M	
	stroke oil engine: Cylinder diameter=250mm, Stroke Length=400mm,	COS	LIJ	12111	
	M.E.P=7bar, Engine Speed=250rpm, Net Load on the				
	brake=1080N,Effective diameter of the brake=1.5 metres, Fuel used per				
	hour=10Kg, calorific value fo fuel=44300Kj/Kg. Calculate (i)Indicated				
	Power (ii) Brake Power (iii) Mechanical Efficiency (iv) Indicated thermal efficiency				
	· OR				
10		COS	т э	121/4	
10	Compare 2-stroke engine with 4-stroke engine.	CO5	LZ	12M	
	*** END ***				